
funlisp Documentation

Stephen Brennan

May 18, 2021

CONTENTS:

1 Language Guide 3
1.1 Hello World . 3
1.2 Comments . 3
1.3 Types . 4
1.4 Integer Functions . 5
1.5 Control Flow . 5
1.6 Functions and Recursion . 6
1.7 Scoping . 7
1.8 Higher Order Functions . 7
1.9 Macros + Advanced Quoting . 7
1.10 The End . 8

2 Embedding 9
2.1 Basic Components . 9
2.2 The REPL . 10
2.3 The Script Runner . 11
2.4 Calling C Functions From Lisp . 12
2.5 Basics of Lisp Types . 13
2.6 Adding Builtins to the Scope . 14
2.7 Calling Lisp Functions From C . 16
2.8 User Contexts . 18
2.9 Building Lists . 18
2.10 Advanced Topics . 19

3 API Reference 21
3.1 Funlisp Runtime . 21
3.2 Lisp Values . 23
3.3 Lisp Scopes . 24
3.4 Lisp Lists . 26
3.5 Lisp Types . 28
3.6 Builtin Functions . 31
3.7 Modules . 34
3.8 Embedding Tools . 35
3.9 Error Handling . 37

4 Advanced Topics 41
4.1 Type System . 41
4.2 Iterators . 42
4.3 Garbage Collection . 43

i

5 Indices and tables 45

Index 47

ii

funlisp Documentation

funlisp is a small, simple, easy-to-embed scripting language written in C. It is a dialect of lisp, but doesn’t adhere to
any particular standard. This documentation contains information for those looking to learn the language, as well as
those looking to embed and extend it.

You can get started by cloning the repository from GitHub, and then compiling the main program:

$ git clone https://github.com/brenns10/funlisp
$ make bin/funlisp
$ bin/funlisp
> (define hello (lambda () (print "hello world")))
<lambda hello>
> (hello)
hello world

If you do not have the a POSIX.2 system, or if you cannot install the Readline library (on which the main program
depends), you can use the simpler (but less feature-rich) programs bin/repl and bin/runfile.

From there, you can evaluate some arithmetic and write some lambdas! See the table of contents below for guidance
on the language, and how to embed the interpreter in your program. There is also some (limited) documentation on the
internals of the interpreter, to help interested readers of my code (and probably me someday).

Visit the repository for more information, to view the source, to report bugs, or even to begin contributing!

CONTENTS: 1

https://github.com/brenns10/funlisp

funlisp Documentation

2 CONTENTS:

CHAPTER

ONE

LANGUAGE GUIDE

1.1 Hello World

As any good programming language documentation should, let’s start with hello world:

(define main
(lambda (args)
(print "hello world")))

Here we see many of the normal expectations from a hello world: a function declaration and a print statement. define
binds a name to any value you’d like. In this case, we’re binding the symbol main to be a function.

Functions are declared using the lambda statement. They are enclosed in parentheses, and first contain a list of argu-
ments, then an expression that is their implementation. Our main function simply prints a string. We can run this script
using the bin/runfile utility bundled with funlisp:

$ make bin/runfile
some make output
$ bin/runfile scripts/hello_world.lisp
hello world

1.2 Comments

Line comments are created in funlisp by starting them with a semicolon (;). Everything after that, until the end of the
line, is ignored by the parser. Here are some examples:

; i'm a comment
(print "i'm some code" ; with a comment in the middle
)

3

funlisp Documentation

1.3 Types

To accelerate our learning, try compiling the REPL. You might need to install libedit to build it.

$ make bin/repl
some make output
$ bin/repl
>

Like most REPLs, this takes a line at a time, executes it, and prints the result. We’ll use this for demonstrating some of
funlisp’s types.

> 5
5
> "blah"
blah

The two most obvious data types are the integer and string, as you can see above.

> 'hello
hello
> '(1 2 3)
(1 2 3)

Above are two less obvious types, the “symbol” and the “list”. Symbols are like strings, but they are used to bind names
to values in lisp. Lists are the fundamental data structure of funlisp, used to hold both data and code! Both of those
had quotes in front of them. Quoting in this way prevents funlisp from evaluating them, since symbols and lists behave
a bit differently when they’re evaluated:

> hello
error: symbol not found in scope

The symbol was looked up in the scope, but it turns out that there’s no hello in scope. However, we know several
things that are in the scope, from our hello world program:

> define
<builtin function define>
> lambda
<builtin function lambda>
> print
<builtin function print>

Neat! The symbols are names for builtin functions.

Lists behave in a special way when evaluated too. Funlisp tries to “call” the first item on the list, with the other items
as arguments. We saw this with hello world as well:

> (1 2)
error: not callable!
> (print 2)
2

Turns out that “1” is not callable, but the function attached to the print symbol is!

4 Chapter 1. Language Guide

funlisp Documentation

1.4 Integer Functions

So, we’ve seen some neat tricks with the four basic builtin types. Now let’s see how to manipulate integers:

> (+ 1 1)
2
> (- 5 1)
4
> (/ 4 3)
1
> (* 2 2)
4

Those basic arithmetic functions behave like any other function call. They look a bit odd because we expect arithmetic
operators to be in the middle of an expression, but you’ll get used to it!

> (= 5 5)
1
> (> 5 6)
0
> (<= 4 5)
1

Comparison operators look like that too. They return integers, which are used for conditionals in funlisp the same way
that C does.

1.5 Control Flow

Speaking of control-flow, funlisp has a handy if statement:

> (if (= 5 4) (print "impossible") (print "boring"))
boring

Since we try to make everything in funlisp into an expression, if statements must have both a “value if true” and a
“value if false”. You cannot leave out the else.

Funlisp also has the cond statement, which allows you to test whether one of several conditions match. To test this out,
we’ll define some functions that use cond.

(define divisible
(lambda (number by)

(= number (* by (/ number by)))))

(define talk-about-numbers
(lambda (number)
(cond

((divisible number 2) (print "The number " number " is even!"))
((divisible number 3) (print "It may not be even, but " number " is divisible by␣

→˓3!"))
(1 (print "The number " number " is odd, and not even divisible by 3.")))))

Don’t worry about the function stuff, we’ll revisit it later. Next is an example using these functions in the interpreter.

1.4. Integer Functions 5

funlisp Documentation

> (talk-about-numbers 6)
The number 6 is even!
> (talk-about-numbers 5)
The number 5 is odd, and not even divisible by 3.
> (talk-about-numbers 9)
It may not be even, but 9 is divisible by 3!

The cond statement can use “1” as a default truth condition. However, it need not have a default case - when cond falls
through, it returns nil, the empty list.

Funlisp doesn’t currently have any form of iteration. However, it supports recursion, which is a very powerful way of
iterating, and handling objects like lists.

1.6 Functions and Recursion

We’ve already seen the lambda syntax of creating functions for our hello world. Now let’s check out some others:

> (define double (lambda (x) (* 2 x)))
<lambda function>
> (double 2)
4

We can recursively call our own function, for great good:

(define factorial
(lambda (x)
(if (= 0 x)
1
(* x (factorial (- x 1))))))

We can also use that capability to process a list of elements:

(define increment-all
(lambda (x)
(if (null? x)
'()
(cons (+ 1 x) (increment-all (cdr x))))))

Oops, looks like I’ve introduced you to cons and cdr. These are from a family of list processing functions that do the
following:

• (cons x l) - put x at the beginning of list l

• (car l) - return the first item in l

• (cdr l) - return the elements after the first one in l

6 Chapter 1. Language Guide

funlisp Documentation

1.7 Scoping

Sometimes, you want to evaluate a value once, and save it for use multiple times. You can achieve this with let. Let
has the syntax (let BINDING-LIST expressions...). BINDING-LIST is a list of pairs, mapping a symbol to a
value. Here’s an example:

> (let ((x (+ 5 5)) (y (- x 2))) (+ x y))
18

Here the binding list contains the pair (x (+ 5 5)), mapping x to the evaluated value 10. The next binding, (y (-
x 2)) maps y to 8. Notice that the second binding may refer to the earlier one in the list. This can happen in reverse
as well, if for example the first binding is a function:

> (let ((return1 (lambda () x)) (x 1)) (return1))
1

This needlessly complicated piece of work shows that the lambda bound to return1 can access the name x, if it
accesses it after x is bound.

1.8 Higher Order Functions

Now that we’ve incremented each item in a list, what if we want to decrement? We’d have to rewrite the whole function
again, replacing the plus with a minus. Thankfully, we can do a better job, using map:

(define increment-all (lambda (l) (map (lambda (x) (+ 1 x) l))))

Map is a function which takes another function, as well as a list of items, and applies it to each item, returning the list
of results.

We also have access to the reduce function, which applies that function to the list in pairs:

> (reduce + '(1 2 3))
6

1.9 Macros + Advanced Quoting

Funlisp provisionally supports some more powerful features of lisp: macros and quoting. Macros are similar to func-
tions which take un-evaluated code (s-expressions), and return new code. Since code is represented as lists of symbols
internally, it can be manipulated quite nicely with lisp code as well. The result is capable of defining syntatic shortcuts
and other niceties. Here is an example that takes the common (define function-name (lambda (args) ...))
pattern and shortens it into a more convenient construct: (defun name (args) ...).

(define defun (macro (name args code)
(list 'define name (list 'lambda args code))))

This uses the (list) builtin which constructs a list from evaluated expressions. The first argument, name is a symbol
representing the name of the function. It gets substituted after the define symbol. The remaining arguments are part
of the lambda declaration and get substituted later. The result is a macro that you can use to define functions like this:

(defun +1 (n) (+ n 1))

1.7. Scoping 7

funlisp Documentation

However, you can see that it would get a bit cumbersome to use the list builtin everywhere, so a more advanced
quoting system exists. In this “quasiquoting” system allows you to quote most of the data using a backtick, but “turn
off” quoting for certain parts using a comma. Here is the same macro rewritten:

(define defun (macro (name args code)
`(define ,name (lambda ,args ,code))))

You can see this is shorter and less error-prone. Simply write the code the way you’d like to see it, but use commas to
substitute evaluated values.

Warning: While macros are usually evaluated at compile/parse time, funlisp currently evaluates them after the
fact – just before the code is about to be run. Further, funlisp evaluates the macros each time they are used, rather
than once only. The result is that macros are slightly less efficient than one might expect. But, you’re not using
funlisp for its efficiency, right?

1.10 The End

This is the end of our short guide to funlisp. Hopefully as time goes by, the language will grow, and maybe even obtain
a standard library! But for now, funlisp remains sleek and small.

8 Chapter 1. Language Guide

CHAPTER

TWO

EMBEDDING

Funlisp is simply a static library. The ‘fun’ part comes when it is linked with a program that can make creative use of
a scripting language. Funlisp comes with some useful example programs - a REPL (read-eval-print loop) and a script
runner. In this section, we’ll go over some basic concepts of funlisp, describe the implementation of these tools, and
then go into how your program can integrate with the library.

2.1 Basic Components

To use the lisp interpreter, there are a few basic concepts to understand.

The interpreter has a lisp_runtime object associated with it. It holds all sorts of contextual information about the
interpreter, especially having to do with garbage collection. You need to have an instance of a runtime in order use
most of the rest of the library. You can create a runtime with lisp_runtime_new() and once initialized, you must
destroy it with lisp_destroy().

Warning: Destroying a runtime also ends up garbage collecting all language objects created within that runtime,
so if you want to access language objects, do it before destroying the runtime.

In order to run any code, you will need to have a global lisp_scope. This object binds names to funlisp val-
ues, including several of the critical built in functions and constructs of the language. You can use the function
lisp_new_default_scope() to create a scope containing all the default language constructs (these are pretty impor-
tant). If you ever need a new, empty scope, you can create it with lisp_new_empty_scope().

Objects contained within the scope (and in fact, the scope itself) are all of type lisp_value - aka a funlisp object. This
means they all share some common fields at their head, they all support some common operations (such as printing),
and they are all managed by the garbage collector. So, you won’t need to manually free a scope. Instead, use the garbage
collector.

Speaking of this garbage collector, how does it work? Funlisp uses a mark and sweep garbage collector. This means
that every so often the application must pause the program, mark all reachable language objects, and free everything
that is unreachable. To do this, you need a “root set” of objects, which is typically your global scope. You should call
lisp_mark() on this root set, followed by lisp_sweep() on the runtime to free up all objects associated with your
runtime, which are not reachable from your root set.

Warning: The garbage collector can make it easy to shoot yourself in the foot. It has no qualms with freeing a
lisp_value that you’ll be using on the very next line of code. So be sure to explicitly mark not only the objects
that your scripts will need (this is usually just the scope), but also the objects that your C code would like to access,
when you run the GC.

9

funlisp Documentation

2.2 The REPL

With this knowledge, a REPL is pretty easy to make! Here is an outline of the steps:

1. First, create a language runtime and a global scope.

2. Read a line of input.

3. Parse the input. Parsed code is simply a lisp_value like any other language object.

4. Evaluate the input within the global scope.

5. If an error occurred, print it and continue. If nothing of interest is returned, do nothing. Otherwise, print the
output, and a trailing newline.

6. Mark everything in scope, then sweep unreachable objects.

7. Repeat steps 2-7 for each line of input.

8. Destroy the language runtime to finish cleaning up memory.

Here is some basic code that demonstrates embedding a simple lisp interpreter, without any custom functions. It uses
the editline implementation of the readline library for reading input (and allowing line editing).

/*
* repl.c: very basic read-eval-print loop
*
* Stephen Brennan <stephen@brennan.io>
*/

#include <stdio.h>
#include <stdlib.h>

#include "funlisp.h"

int main(int argc, char **argv)
{

char input[256];
lisp_runtime *rt = lisp_runtime_new();
lisp_scope *scope = lisp_new_default_scope(rt);

(void)argc; /* unused parameters */
(void)argv;

for (;;) {
lisp_value *value, *result;
int bytes;

printf("> ");
fflush(stdout);
if (!fgets(input, sizeof(input), stdin))

break;

bytes = lisp_parse_value(rt, input, 0, &value);
if (bytes < 0) {

/* parse error */
lisp_print_error(rt, stderr);

(continues on next page)

10 Chapter 2. Embedding

funlisp Documentation

(continued from previous page)

lisp_clear_error(rt);
continue;

} else if (!value) {
/* empty line */
continue;

}
result = lisp_eval(rt, scope, value);
if (!result) {

lisp_print_error(rt, stderr);
lisp_clear_error(rt);

} else if (!lisp_nil_p(result)) {
lisp_print(stdout, result);
fprintf(stdout, "\n");

}
lisp_mark(rt, (lisp_value*)scope);
lisp_sweep(rt);

}

lisp_runtime_free(rt);
return 0;

}

Notice here that lisp_eval() returns NULL in case of an error. If that happens, then you can use
lisp_print_error() to print a user-facing error message, and lisp_clear_error() to clear the error from the
interpreter state.

2.3 The Script Runner

Running a script is a slightly different story. Scripts generally define functions, including a main function, and then want
to be executed with some command line arguments. So after reading and executing all the lines of code in a file, you’ll
want to execute the main function. We can use a nice utility for that, lisp_run_main_if_exists(). What’s more,
the lisp_parse() function used in the REPL can only parse a single expression. We have to use a more powerful
option that can handle a whole file full of multiple expressions: lisp_load_file().

Below is the source of the bundled script runner:

/*
* runfile.c: Run a text file containing lisp code
*
* Stephen Brennan <stephen@brennan.io>
*/

#include <stdio.h>
#include <stdlib.h>

#include "funlisp.h"

int main(int argc, char **argv)
{

FILE *input;
(continues on next page)

2.3. The Script Runner 11

funlisp Documentation

(continued from previous page)

lisp_runtime *rt;
lisp_scope *scope;
lisp_value *result;
int rv;

if (argc < 2) {
fprintf(stderr, "error: expected at least one argument\n");
return EXIT_FAILURE;

}

input = fopen(argv[1], "r");
if (!input) {

perror("open");
return EXIT_FAILURE;

}

rt = lisp_runtime_new();
scope = lisp_new_default_scope(rt);

lisp_load_file(rt, scope, input);
if (lisp_get_error(rt)) {

lisp_print_error(rt, stderr);
rv = 1;
fclose(input);
goto out;

}
fclose(input);

result = lisp_run_main_if_exists(rt, scope, argc - 2, argv + 2);
if (!result) {

lisp_print_error(rt, stderr);
rv = 1;

} else {
rv = 0;

}
out:

lisp_runtime_free(rt); /* sweeps everything before exit */
return rv;

}

2.4 Calling C Functions From Lisp

Typically, an embedded interpreter will not be of much use to your application unless you can call into your application,
or your application can call into the interpreter. The most straightforward way to add your own functionality to the
interpreter is by writing a “builtin” - a C function callable from lisp. Builtins must have the following signature:

lisp_value *lisp_builtin_somename(lisp_runtime *rt,
lisp_scope *scope,
lisp_value *arglist,
void *user);

12 Chapter 2. Embedding

funlisp Documentation

The scope argument contains the current binding of names to values, and the arglist is a list of arguments to your
function, which have not been evaluated. These arguments are essentially code objects. You’ll almost always want to
evaluate them all before continuing with the logic of the function. You can do this individually with the lisp_eval()
function, or just evaluate the whole list of arguments with the lisp_eval_list() function.

Warning: As we’ve noticed in the previous example programs, evaluating code can return NULL if an error
(e.g. an exception of some sort) occurs. A well-behaved builtin will test the result of all calls to lisp_eval()
and lisp_call() using the macro lisp_error_check() in order to propagate those errors back to the user.
lisp_eval_list() propagates errors back, and so it should be error checked as well.

The one exception to evaluating all of your arguments is if you’re defining some sort of syntactic construct. An example
of this is the if-statement. The if statement looks like (if condition expr-if-true expr-if-false). It is
implemented as a builtin function, which first evaluates the condition. Then, only the correct expression is evaluated
based on that condition.

Finally, when you have your argument list, you could verify them all manually, but this process gets annoying very
fast. To simplify this process, there is lisp_get_args(), a function which takes a list of (evaluated or unevaluated)
arguments and a format string, along with a list of pointers to result variables. Similar to sscanf(), it reads a type
code from the format string and attempts to take the next object off of the list, verify the type, and assign it to the current
variable in the list. The current format string characters are:

• d: for integer

• l: for list

• s: for symbol

• S: for string

• o: for scope

• b: for builtin

• t: for type

• *: for anything

So, a format string for the plus function would be "dd", and the format string for the cons function is "**", because
any two things may be put together in an s-expression. If nothing else, the lisp_get_args() function can help you
verify the number of arguments, if not their types. When it fails, it returns false. It sets an internal interpreter error
depending on what happened (too many arguments, not enough, types didn’t matche, etc). You can handle this by
simply returning NULL from your builtin. If argument parsing doesn’t fail, your function is free to do whatever logic
you’d like.

Finally, note that the signature includes a void *user parameter. This “user context” is specified when you register
the builtin function, and passed back to you at runtime.

2.5 Basics of Lisp Types

In order to write any interesting functions, you need a basic idea of how types are represented and how you can get
argument values out of the lisp_value objects. This is not a description of the type system (a future page in this
section will cover that), just a list of available types and their values.

Warning: Currently, the structs defining these types are not in the public header file, funlisp.h. We’re still
working on the best way to expose types to the API.

2.5. Basics of Lisp Types 13

funlisp Documentation

The current types (that you are likely to use) are:

• lisp_list: contains a left and a right pointer.

– left is usually a value of the linked list, and right is usually the next list in the linked list. However this
isn’t necessarily the case, because this object really represents an s-expression, and the right value of an
s-expression doesn’t have to be another s-expression.

– The empty list is a special instance of lisp_list. You can get a new reference to it with lisp_nil_new()
and you can check if an object is nil by calling lisp_nil_p().

– You can find the length of a list by using lisp_list_length().

• lisp_symbol: type that represents names. Contains sym, which is a char*.

• lisp_integer: contains attribute x, an integer. Yes, it’s allocated on the heap. Get over it.

• lisp_string: another thing similar to a symbol in implementation, but this time it represents a language string
literal. The s attribute holds the string value.

There are also types for builtin functions, lambdas, scopes, and even a type for types! But you probably won’t use them
in your average code.

2.6 Adding Builtins to the Scope

Once you have written your functions, you must finally add them to the interpreter’s global scope. Anything can be
added to a scope with lisp_scope_bind()., but the name needs to be a lisp_symbol instance and the value needs to
be a lisp_value. To save you the trouble of creating those objects, you can simply use lisp_scope_add_builtin(),
which takes a scope, a string name, a function pointer, and a user context pointer.

Here is a code example that puts all of this together, based on the REPL given above.

/*
* hello_repl.c: very basic read-eval-print loop, with builtins
*
* Stephen Brennan <stephen@brennan.io>
*/

#include <stdio.h>
#include <stdlib.h>

#include "funlisp.h"

/* (1) Here is our builtin function declaration. */
static lisp_value *say_hello(lisp_runtime *rt, lisp_scope *scope,

lisp_list *arglist, void *user)
{

char *from = user;
lisp_string *s;
(void) scope; /* unused */

if (!lisp_get_args(rt, arglist, "S", &s)) {
return NULL;

}

printf("Hello, %s! I'm %s.\n", lisp_string_get(s), from);
(continues on next page)

14 Chapter 2. Embedding

funlisp Documentation

(continued from previous page)

/* must return something, so return nil */
return lisp_nil_new(rt);

}

int main(int argc, char **argv)
{

char input[256];
lisp_runtime *rt = lisp_runtime_new();
lisp_scope *scope = lisp_new_default_scope(rt);

(void)argc; /* unused parameters */
(void)argv;

/* (2) Here we register the builtin once */
lisp_scope_add_builtin(rt, scope, "hello", say_hello, "a computer", 1);
/* (3) Now register the same function with a different context object */
lisp_scope_add_builtin(rt, scope, "hello_from_stephen", say_hello, "Stephen", 1);

for (;;) {
lisp_value *value, *result;
int bytes;

printf("> ");
fflush(stdout);
if (!fgets(input, sizeof(input), stdin))

break;

bytes = lisp_parse_value(rt, input, 0, &value);
if (bytes < 0) {

/* parse error */
lisp_print_error(rt, stderr);
lisp_clear_error(rt);
continue;

} else if (!value) {
/* empty line */
continue;

}
result = lisp_eval(rt, scope, value);
if (!result) {

lisp_print_error(rt, stderr);
lisp_clear_error(rt);

} else if (!lisp_nil_p(result)) {
lisp_print(stdout, result);
fprintf(stdout, "\n");

}
lisp_mark(rt, (lisp_value*)scope);
lisp_sweep(rt);

}

lisp_runtime_free(rt);
return 0;

(continues on next page)

2.6. Adding Builtins to the Scope 15

funlisp Documentation

(continued from previous page)

}

In this example, we’ve added a builtin function, defined at (1). This function takes a string, and prints a greeting
message. It uses its “user context” object as a string, to introduce itself. During startup, we register the builtin function
once, with name “hello” (2). We provide it with a user context of “a computer.” We register it again at (3), with the
name “hello_from_stephen”, and the user context “Stephen.”

An example session using the builtin shows how the functions may be called from the REPL, and how the user context
objects affect the builtin:

> (hello "Stephen")
Hello, Stephen! I'm a computer.
> (hello_from_stephen "computer")
Hello, computer! I'm Stephen.
> (hello 1)
error: expected a string!
> (hello 'Stephen)
error: expected a string!

2.7 Calling Lisp Functions From C

Just like it’s possible to call C from lisp, you can call lisp from C. You’ve already seen plenty of examples of this, in
the runfile tool. The runfile tool uses a helper function called run_main_if_exists(), but here’s how it works.

1. First, you need to have a runtime and scope. If you’re working in a builtin, you may have been given one.
Otherwise, you’ll probably have to create a default scope, and probably load in some user code too.

2. Second, you need to look up the function you want to call. Typically, you’ll look it up in your scope using
lisp_scope_lookup().

3. Third, you need to build your arguments. Arguments are always a list of un-evaluated values. Since the lisp
function will evaluate its arguments, you need to make sure they will end up being what you intended. For
example, evaluating a list will result in calling the first item with the rest of the items as arguments. A fool proof
way of ensuring that your data makes it thruogh unscathed is to quote it using lisp_quote().

4. Fourth, you should use lisp_call() to call the function with your arguments.

Here’s a full example!

/*
* call_lisp.c: example demonstrating how to call lisp functions from C
*
* Stephen Brennan <stephen@brennan.io>
*/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "funlisp.h"

int call_double_or_square(lisp_runtime *rt, lisp_scope *scope, int x)
{

(continues on next page)

16 Chapter 2. Embedding

funlisp Documentation

(continued from previous page)

int rv;
lisp_list *args;
lisp_value *res;
lisp_value *function = lisp_scope_lookup_string(rt, scope,

"double_or_square");
assert(function != NULL);

args = lisp_list_new(rt,
(lisp_value *) lisp_integer_new(rt, x),
(lisp_value *) lisp_nil_new(rt));

res = lisp_call(rt, scope, function, args);
assert(lisp_is(res, type_integer));
rv = lisp_integer_get((lisp_integer *) res);
printf("(double_or_square %d) = %d\n", x, rv);
return rv;

}

int main(int argc, char **argv)
{

lisp_runtime *rt;
lisp_scope *scope;
lisp_value *code;
int bytes;

(void) argc; /* unused parameters */
(void) argv;

rt = lisp_runtime_new();
scope = lisp_new_default_scope(rt);
bytes = lisp_parse_value(rt,

"(define double_or_square"
" (lambda (x)"
" (if (< x 10)"
" (* x x)"
" (* x 2))))",
0, &code

);
assert(bytes >= 0);
lisp_eval(rt, scope, code);

call_double_or_square(rt, scope, 5);
call_double_or_square(rt, scope, 7);
call_double_or_square(rt, scope, 9);
call_double_or_square(rt, scope, 11);
call_double_or_square(rt, scope, 13);

lisp_runtime_free(rt);
return 0;

}

A few things to note about this:

• We wrapped the lisp function in a C one. This is nice for getting rid of some complexity.

2.7. Calling Lisp Functions From C 17

funlisp Documentation

• There was no need to quote the integer, because integers evaluate to themselves.

• We had to build the argument list from scratch :(

This program produces exactly the output you’d expect:

$ bin/call_lisp
(double_or_square 5) = 25
(double_or_square 7) = 49
(double_or_square 9) = 81
(double_or_square 11) = 22
(double_or_square 13) = 26

2.8 User Contexts

Usually, an application will want to have access to some of its own data. To that end, the embedding application may
associate a “user context” with the lisp_runtime using lisp_runtime_set_ctx(). This context may be some
global state, etc. Later (e.g. within a builtin function), the context may be retrieved with lisp_runtime_get_ctx().

Furthermore, each builtin function may associate itself with a user context object as well (provided upon registration).
This allows the same C function to be registered multiple times as multiple Funlisp functions. It also allows the C
function to access additional context, which it may not have been able to get through the context object attached to the
runtime.

2.9 Building Lists

Many parts of the funlisp API require constructing lists. As has been mentioned earlier, funlisp “list” types are singly
linked lists. Each node’s left pointer points to the data contained by the node, and the right pointer points to the
next node in the list. nil, returned by lisp_nil_new(), is the empty list, and every list is terminated by it.

You have several options available to you for constructing lists. First is lisp_list_new(), which allows you to create
a new list given a left and a right pointer. This may be used for constructing single list nodes. It may also be used to
construct a list in reverse, starting with the last node and continuing to the first one. You may also directly set the left
and right pointer of a list node, using lisp_list_set_left() and lisp_list_set_right() respectively.

Warning: Note that lisp lists are not mutable. In Lisp, any modification to list results in a new one. Thus, you
should never modify list nodes, unless you have just created them yourself and are constructing a full list.

Also note that lisp lists’ left and right pointers should never contain null – this will certainly cause a segmen-
tation fault when they are used. However, you can set these pointers to null during the construction of a list, so
long as the end result is a valid list with no nulls.

The simplest option is lisp_list_append(). This function allows you to construct a list forwards (rather than re-
verse). It requires double pointers to the head and tail of the list (where tail is the last non-nil item in the list). See the
generated documentation for full information, but below is a fully working example of using it:

/*
* example_list_append.c: example demonstrating how to append to a list
*
* Stephen Brennan <stephen@brennan.io>
*/

(continues on next page)

18 Chapter 2. Embedding

funlisp Documentation

(continued from previous page)

#include <stdio.h>

#include "funlisp.h"

int main(int argc, char **argv)
{

lisp_runtime *rt;
lisp_list *head, *tail;

(void) argc; /* unused parameters */
(void) argv;

rt = lisp_runtime_new();

head = tail = (lisp_list*) lisp_nil_new(rt);
lisp_list_append(rt, &head, &tail, (lisp_value*)lisp_integer_new(rt, 1));
lisp_list_append(rt, &head, &tail, (lisp_value*)lisp_integer_new(rt, 2));
lisp_list_append(rt, &head, &tail, (lisp_value*)lisp_integer_new(rt, 3));
lisp_print(stdout, (lisp_value*)head);
fprintf(stdout, "\n");

lisp_runtime_free(rt);
return 0;

}

Finally, there are a few specialized options for constructing lists. lisp_singleton_list() allows you to construct
a list with one item. lisp_list_of_strings() is useful for converting the argv and argc of a C main function into
program arguments for a funlisp program.

2.10 Advanced Topics

From here, you should be equipped to get a fair amount out of funlisp. If you’re looking for more, check the source
code! In the future, I hope to write some documentation on implementation concepts to make this easier.

2.10. Advanced Topics 19

funlisp Documentation

20 Chapter 2. Embedding

CHAPTER

THREE

API REFERENCE

Contents

• API Reference

– Funlisp Runtime

– Lisp Values

– Lisp Scopes

– Lisp Lists

– Lisp Types

– Builtin Functions

– Modules

– Embedding Tools

– Error Handling

3.1 Funlisp Runtime

typedef struct lisp_runtime lisp_runtime
This is a context object, which tracks all language objects which have been created, and is used for garbage
collection as well as holding any other information about your instance of the interpreter. The context can be
created with lisp_runtime_new() and destroyed with lisp_runtime_free(). The context is passed to nearly every
function in the library, and builtin functions receive it as well.

The context may contain a “user context” (simply a void pointer) that an embedding application may want
its builtin functions to have access to. Context is added with lisp_runtime_set_ctx() and retrieved with
lisp_runtime_get_ctx().

lisp_runtime *lisp_runtime_new(void)
Allocate and initialize a new runtime object. You must use lisp_runtime_free() to cleanup every runtime you
create.

Returns new runtime

void lisp_runtime_set_ctx(lisp_runtime *rt, void *user)
Set the user context of a lisp_runtime.

Parameters

21

funlisp Documentation

• rt – runtime

• user – user context to set

void *lisp_runtime_get_ctx(lisp_runtime *rt)
Get the user context from a lisp_runtime.

Parameters

• rt – runtime

Returns the user context object

void lisp_runtime_free(lisp_runtime *rt)
Clean up all resources and free a runtime object.

Warning: This will invoke the garbage collector, freeing every language object associated with the runtime.
Once calling this, ALL pointers to funlisp objects become invalid.

Parameters

• rt – runtime to free

void lisp_enable_strcache(lisp_runtime *rt)
Enable runtime support for caching strings.

When string caching is enabled, strings created with lisp_string_new() will be looked up from a cache first, and
if they already exist, a cached object will be returned. This reduces the number of unique objects and memory
objects, which both improves memory utilization and garbage collection times.

Parameters

• rt – runtime to enable string caching on

void lisp_enable_symcache(lisp_runtime *rt)
Enable runtime support for caching symbols.

When symbol caching is enabled, symbols created with lisp_symbol_new() will be looked up from a cache first,
and if they already exist, a cached object will be returned. This reduces the number of unique objects and memory
objects, which both improves memory utilization and garbage collection times.

Parameters

• rt – runtime to enable symbol caching on

void lisp_disable_strcache(lisp_runtime *rt)
Disable string caching.

Parameters

• rt – runtime to disable caching

void lisp_disable_symcache(lisp_runtime *rt)
Disable symbol caching.

Parameters

• rt – runtime to disable caching

22 Chapter 3. API Reference

funlisp Documentation

3.2 Lisp Values

typedef struct lisp_value lisp_value
In funlisp, (almost) everything is a lisp_value. That is, it can be cast to a lisp_value * and operated on.
Integers, Strings, Code, etc. The only thing which is not a lisp_value is the lisp_runtime.

typedef struct lisp_type lisp_type
A type object is a lisp_value containing operations that must be supported by every type of object. It is not
garbage collected, and every lisp_value contains a pointer to its type object (even lisp_types themselves!).

The only external use for a type object is that you can use it wih lisp_is() to type check any lisp_value. Every
type named lisp_X will have a corresponding type_X object available.

See lisp_is()

lisp_type *type_type
Type object of lisp_type, for type checking.

See lisp_is()

void lisp_print(FILE *f, lisp_value *value)
Prints a string representing value to f. This output is not meant to contain all the information necessary to recreate
value, just enough to give you an idea what it is.

Parameters

• f – file open for writing

• value – value to print

lisp_value *lisp_eval(lisp_runtime *rt, lisp_scope *scope, lisp_value *value)
Evaluate the lisp_value in a given context. Since lisp values represent code as well as data, this is more applicable
to some data structures than others. For example, evaluating a scope will not work. However, evaluating a symbol
will look it up in the current scope, and evaluating list l will attempt to call (car l) with arguments (cdr l).

When an error occurs during execution, this function returns NULL and sets the internal error details within the
runtime.

Parameters

• rt – runtime associated with scope and value

• scope – the scope to use for evaluation (used when looking up symbols)

• value – the value to evaluate

Returns NULL when an error occurs

Returns the result of evaluating value in scope

lisp_value *lisp_call(lisp_runtime *rt, lisp_scope *scope, lisp_value *callable, lisp_list *arguments)
Call a callable object with a list of arguments. Many data types are not callable, in which case a NULL is returned
and an error is set within the runtime.

Parameters

• rt – runtime

• scope – scope in which we are being evaluated

• callable – value to call

3.2. Lisp Values 23

funlisp Documentation

• arguments – a lisp_list containing arguments (which have not yet been evaluated)

Returns NULL when an error occurs

Returns the result of calling callable with args arguments in scope scope.

int lisp_compare(lisp_value *self, lisp_value *other)
Compare two values for equality by value (not pointer). Generally this comparison should only be valid among
objects of the same type.

Parameters

• self – value to compare with

• other – other value

Returns 0 NOT equal

Returns nonzero equal

Returns comparison result as a boolean

int lisp_is(lisp_value *value, lisp_type *type)
Perform type checking. Returns true (non-zero) when value has type type.

lisp_value *v = lisp_eval(rt, some_code, some_scope);
if (lisp_is(v, type_list)) {

// do something based on this
}

Parameters

• value – value to type-check

• type – type object for the type you’re interested in

Returns true (non-zero) if value has type type

Returns false (zero) if value is not of type type

3.3 Lisp Scopes

typedef struct lisp_scope lisp_scope
Scope objects bind lisp_symbol’s to lisp_value’s. In order for the language to function correctly, the root
scope needs to contain all of the language built-in features. You can obtain a scope like this by calling
lisp_new_default_scope(), or you can create an empty one with lisp_new_empty_scope().

lisp_type *type_scope
Type object of lisp_scope, for type checking.

See lisp_is()

lisp_scope *lisp_new_default_scope(lisp_runtime *rt)
Create a new scope containing the default builtins (lambda, define, arithmetic operators, etc). This is just a
shortcut for using lisp_new_empty_scope() followed by lisp_scope_populate_builtin().

Parameters

• rt – runtime

Returns new default scope

24 Chapter 3. API Reference

funlisp Documentation

lisp_scope *lisp_new_empty_scope(lisp_runtime *rt)
Create a new empty scope. This would be most useful when creating a new nested scope, e.g. for a function
body.

Parameters

• rt – runtime

Returns new empty scope

void lisp_scope_populate_builtins(lisp_runtime *rt, lisp_scope *scope)
Add all language defaults to a scope. This is critical for the language work, at all, since most language elements
are implemented as builtin functions. This function is used internally by lisp_new_default_scope().

Parameters

• rt – runtime

• scope – scope to add builtins too

void lisp_scope_bind(lisp_scope *scope, lisp_symbol *symbol, lisp_value *value)
Bind a symbol to a value in a scope.

Parameters

• scope – scope to define the name in

• symbol – symbol that is the name

• value – what the symbol is bound to

lisp_value *lisp_scope_lookup(lisp_runtime *rt, lisp_scope *scope, lisp_symbol *symbol)
Look up a symbol within a scope. If it is not found in this scope, look within the parent scope etc, until it is
found. If it is not found at all, return NULL and set an error within the interpreter.

Parameters

• rt – runtime

• scope – scope to look in

• symbol – symbol to look up

Returns value found, or a NULL when not found

lisp_value *lisp_scope_lookup_string(lisp_runtime *rt, lisp_scope *scope, char *name)
Lookup a name within a scope. Uses a string argument rather than a lisp_symbol object. Behavior is the same
as lisp_scope_lookup().

Parameters

• rt – runtime

• scope – scope to look in

• name – string name to look up

Returns value found, or NULL when not found

3.3. Lisp Scopes 25

funlisp Documentation

3.4 Lisp Lists

typedef struct lisp_list lisp_list
Lisp is a list-processing language, and lisp_list is a building block for lists. It is somewhat mis-named, because
it actually represents a s-expression, which is just a simple data structure that has two pointers: left and right.
Normal lists are a series of s-expressions, such that each node contains a pointer to data in “left”, and a pointer
to the next node in “right”. S-expressions may be written in lisp like so:

> '(left . right)
(left . right)

Normal lists are simply syntactic sugar for a series of nested s-expressions:

> '(a . (b . '()))
(a b)

lisp_type *type_list
Type object of lisp_list, for type checking.

See lisp_is()

lisp_list *lisp_list_new(lisp_runtime *rt, lisp_value *left, lisp_value *right)
Create a new list node with left and right value already specified. This interface only allows you to create lists
from end to beginning.

Parameters

• rt – runtime

• left – item to go on the left side of the s-expression, usually a list item

• right – item to go on the right side of the s-expression, usually the next lisp_list instance

Returns newly allocated lisp_list

lisp_list *lisp_singleton_list(lisp_runtime *rt, lisp_value *entry)
Given a lisp_value, put it inside a list of size 0 and return it.

Parameters

• rt – runtime

• entry – item to put inside a list

Returns a singleton list

lisp_list *lisp_list_of_strings(lisp_runtime *rt, char **list, size_t n, int flags)
Convert the array of strings into a lisp list of string objects.

Parameters

• rt – runtime

• list – an array of strings

• n – length of the array

• flags – same flags passed to lisp_string_new()

Returns lisp_list containing lisp_string objects

26 Chapter 3. API Reference

funlisp Documentation

int lisp_list_length(lisp_list *list)
Return the length of a list.

Parameters

• list – list to find the length of

Returns length of the list

lisp_value *lisp_list_get_left(lisp_list *l)
Retrieve the left item of a list node / sexp.

Parameters

• l – list to retrieve from

Returns left item of list node

void lisp_list_set_left(lisp_list *l, lisp_value *left)
Set the left item of a list node.

Warning: Lisp lists are not mutable! This should only be used during construction of lists.

Parameters

• l – list node to set

• left – item to set the left pointer to

lisp_value *lisp_list_get_right(lisp_list *l)
Retrieve the right item of a list node / sexp

Parameters

• l – list to retrieve from

Returns right item of list node

void lisp_list_set_right(lisp_list *l, lisp_value *right)
Set the right item of a list node.

Warning: Lisp lists are not mutable! This should only be used during construction of lists.

Parameters

• l – list node to set

• right – item to set the right pointer to

void lisp_list_append(lisp_runtime *rt, lisp_list **head, lisp_list **tail, lisp_value *item)
Append itemto the end of a list. This routine accepts double pointers to the head and tail of a list, so that it can
update them if they change.

To create a list, you can append onto nil. After that, you may continue appending onto the list. Here is a
complete example:

3.4. Lisp Lists 27

funlisp Documentation

lisp_list *head, *tail;
head = tail = lisp_nil_new(rt);
lisp_list_append(rt, &head, &tail, (lisp_value*) lisp_integer_new(rt, 1));
lisp_list_append(rt, &head, &tail, (lisp_value*) lisp_integer_new(rt, 2));
lisp_list_append(rt, &head, &tail, (lisp_value*) lisp_integer_new(rt, 3));
lisp_print(stdout, (lisp_value*) head);
// prints (1 2 3)

Parameters

• rt – runtime

• head – double pointer to the first item in the list (or nil, if appending to an empty list)

• tail – double pointer to the last non-nil item in the list (or nil, if appending to an empty list)

• item – the value to append

lisp_value *lisp_nil_new(lisp_runtime *rt)
Return a nil instance. Nil is simply a “special” lisp_list, with left and right both set to NULL. It is used to
terminate lists. For example, the list '(a b) is internally: lisp_list(a, lisp_list(b, lisp_list(NULL,
NULL)))

Note: This function is named “new” for uniformity. However, it does’t actually allocate a “new” nil value every
time. Instead, each lisp_runtime has a singleton nil instance, which is never garbage collected.

Parameters

• rt – runtime

Returns the nil value

int lisp_nil_p(lisp_value *l)
Return true if the lisp_value is “nil” (an empty list).

Parameters

• l – value to check

Returns 1 (true) if l is nil

Returns 0 (false) if l is non-nil

3.5 Lisp Types

typedef struct lisp_text lisp_symbol
Symbols are tokens (non-numeric, non parentheses) which occur in funlisp code, not surounded by double quotes.
For example, in the following code:

(define abs
(lambda (x)
(if (< x 0)
(- 0 x)
x)))

28 Chapter 3. API Reference

funlisp Documentation

The symbols are: define, abs, lambda, x, if, and <.

typedef struct lisp_integer lisp_integer
lisp_integer contains an int object of whatever size the C implementation supports.

typedef struct lisp_text lisp_string
This is a string (which occurs quoted in lisp source)

typedef struct lisp_builtin lisp_builtin
This data structure contains a native C function which may be called by funlisp code. The C function must be of
type lisp_builtin_func.

typedef struct lisp_lambda lisp_lambda
Data structure implementing a lisp lambda function.

typedef struct lisp_module lisp_module
Data structure representing a module.

lisp_type *type_symbol
Type object of lisp_symbol, for type checking.

See lisp_is()

lisp_type *type_integer
Type object of lisp_integer, for type checking.

See lisp_is()

lisp_type *type_string
Type object of lisp_string, for type checking.

See lisp_is()

lisp_type *type_builtin
Type object of lisp_builtin, for type checking.

See lisp_is()

lisp_type *type_lambda
Type object of lisp_lambda, for type checking.

See lisp_is()

lisp_type *type_module
Type object of lisp_module

lisp_string *lisp_string_new(lisp_runtime *rt, char *str, int flags)
Return a new string. This function takes a “safe” approach, by copying your string and using the copy. The
pointer will be owned by the interpreter and freed when the lisp_string object is garbage collected. This is roughly
equivalent to duplicating the string using strdup(), and then creating a new owned string with that pointer.

See LS_CPY

See LS_OWN

3.5. Lisp Types 29

funlisp Documentation

Note: This is also safe to use with string literals, but it is not the most efficient way, since the string gets copied.

Parameters

• rt – runtime

• str – string to copy and use in an owned string

• flags – flags related to copying and ownership of str

Returns a new lisp_string

char *lisp_string_get(lisp_string *s)
Return a pointer to the string contained within a lisp_string. The application must not modify or free the string.

Parameters

• s – the lisp string to access

Returns the contained string

lisp_symbol *lisp_symbol_new(lisp_runtime *rt, char *string, int flags)
Return a new symbol. This function will copy the string and free the copy it on garbage collection (much like
lisp_string_new()).

See LS_CPY

See LS_OWN

Parameters

• rt – runtime

• string – the symbol to create

• flags – flags related to copying and ownership of string

Returns the resulting symbol

char *lisp_symbol_get(lisp_symbol *s)
Return the string contained in the symbol.

Parameters

• s – the symbol to retrieve the string from

Returns the string contained in the symbol

lisp_integer *lisp_integer_new(lisp_runtime *rt, int n)
Create a new integer.

Parameters

• rt – runtime

• n – the integer value

Returns newly allocated integer

int lisp_integer_get(lisp_integer *integer)
Retrieve the integer value from a lisp_integer.

Parameters

30 Chapter 3. API Reference

funlisp Documentation

• integer – lisp_integer to return from

Returns the int value

LS_CPY
Flag instructing string/symbol creation routines that they should copy the string buffer itself, and use the copy
rather than the original argument. This could be useful in case callers would like to free the string after creating
a lisp symbol/string from it.

See LS_OWN

See lisp_string_new()

Warning: If you use this without LS_OWN , you will have memory leaks, because funlisp will allocate a
new string, but never free it.

LS_OWN
Flag instructing string/symbol creation routines that when the wrapper object (lisp_string/lisp_symbol) is freed,
the string itself should also be freed. Put in other words, the lisp context should “own” the reference to the string.

When this is unset, we expect that the string exists for the duration of the lisp_context, and we do not free it under
any circumstances. This is good for C string literals, or strings that you know you will keep around for longer
than the lisp_runtime will exist.

See LS_CPY

See lisp_string_new()

Warning: If you unset this, but set LS_CPY , you will have memory leaks!

3.6 Builtin Functions

typedef lisp_value *(*lisp_builtin_func)(lisp_runtime*, lisp_scope*, lisp_list*, void*)
A built-in function. Takes four arguments:

a. The lisp_runtime associated with it. This may be used to retrieved the runtime’s user context object (see
lisp_runtime_get_ctx()).

b. The lisp_scope this function is being called executed within. Most builtin functions will want to evaluate
this with lisp_eval_list().

c. The arguments to this function, as a lisp_list. These may or may not have been evaluated, depending on
whether evald was set when creating the builtin object.

d. The user context associated with this builtin.

lisp_builtin *lisp_builtin_new(lisp_runtime *rt, char *name, lisp_builtin_func call, void *user, int evald)
Create a new lisp_builtin from a function pointer, with a given name.

3.6. Builtin Functions 31

funlisp Documentation

Warning: Namse of builtins are not garbage collected, since they are almost always static. If you need your
name to be dynamically allocated, you’ll have to free it after you free the runtime.

Parameters

• rt – runtime

• name – name of the builtin. the interpreter will never free the name!

• call – function pointer of the builtin

• user – a user context pointer which will be given to the builtin

• evald – non-zero if arguments should be evaluated before being given to this builtin. Zero
if arguments should be given as-is.

Returns new builtin object

void lisp_scope_add_builtin(lisp_runtime *rt, lisp_scope *scope, char *name, lisp_builtin_func call, void
*user, int evald)

Shortcut to declare a builtin function. Simply takes a function pointer and a string name, and it will internally
create the lisp_builtin object with the correct name, and bind it in the given scope.

Parameters

• rt – runtime

• scope – scope to bind builtin in

• name – name of builtin

• call – function pointer defining the builtin

• user – a user context pointer which will be given to the builtin

• evald – non-zero if arguments should be evaluated before being given to this builtin. Zero
if arguments should be given as-is.

lisp_list *lisp_eval_list(lisp_runtime *rt, lisp_scope *scope, lisp_list *list)
Given a list of arguments, evaluate each of them within a scope and return a new list containing the evaluated
arguments. This is most useful for implementing builtin functions.

Parameters

• rt – runtime

• scope – scope to evaluate within

• list – list of un-evaluated function arguments

Returns NULL if an error occured during evaluation

Returns list of evaluated function arguments

lisp_value *lisp_progn(lisp_runtime *rt, lisp_scope *scope, lisp_list *l)
Given a list of lisp_value’s, evaluate each of them within a scope, returning the last value. This is similar to
lisp_eval_list(), but rather than constructing a full list of results, it merely returns the last one. It is used in the
progn builtin, but it also is useful for doing things like evaluating everything in a file or allowing implimenting
“implicit progns”.

Parameters

• rt – runtime

32 Chapter 3. API Reference

funlisp Documentation

• scope – scope

• l – list of expressions to evaluate

int lisp_get_args(lisp_runtime *rt, lisp_list *list, char *format, ...)
Given a list of function arguments, perform type checking and verify the number of arguments according to a
format string. The following formats are recognized:

d - integer
l - list
s - symbol
S - string
o - scope
e - error
b - builtin
t - type
* - anything
R - Rest of arguments

As an example, a function which takes an integer and a string, and prints the string N times, might use the format
string dS.

The remaining variadic arguments are pointers to object pointers, and they will be assigned as each argument is
parsed. EG:

lisp_integer *arg1;
lisp_string *arg2;
lisp_get_args(rt, args, "dS", &arg1, &arg2);

Note: The format code ‘R’ is special and deserves some more attention. When used, it immediately ends
argument processing, so it should only be used at the end of a format string. It will resolve to the remaining
unprocessed arguments as a list, provided that there is at least one (i.e. R will fail if the rest of the args is an
empty list).

Parameters

• rt – runtime

• list – Argument list to type check and count

• format – Format string

• ... – Destination pointer to place results

Returns 1 on success (true)

Returns 0 on failure (false)

3.6. Builtin Functions 33

funlisp Documentation

3.7 Modules

lisp_module *lisp_new_module(lisp_runtime *rt, lisp_string *name, lisp_string *file)
Create a new, empty module object.

The module object represents a separate namespace which can contain symbols mapped to builtins, lambdas,
constants, and more. It is a great place to store related functionality. The module can represent all of the symbols
defined in a single lisp file. It can also represent a collection of resources created by C code.

C code which wishes to create a module should start here, access the scope from the resulting module using
lisp_module_get_scope(), and populate the scope with any builtins or other data necessary. Finally, modules
should be registered with the runtime using lisp_register_module().

Parameters

• rt – runtime

• name – the name of the module, used for imports

• file – filename for the module object. This file is not actually loaded, simply stored as part
of the module metadata. If you would like to load a file as a module, see lisp_import_file().

Returns a new, empty module object

lisp_scope *lisp_module_get_scope(lisp_module *module)
Given a module returned by lisp_new_module(), access its scope.

Parameters

• module – A module to get the scope of

Returns the scope of that module

void lisp_register_module(lisp_runtime *rt, lisp_module *module)
Given a module object, register it with the runtime.

The module is mapped using the name given at creation time. For example, if a module was given the name foo,
then it can be imported with the statement (import foo).

Parameters

• rt – runtime

• module – module to register

lisp_module *lisp_import_file(lisp_runtime *rt, lisp_string *name, lisp_string *file)
Load a file of lisp code and return it as a module object.

Parameters

• name – Name for the resulting module

• file – Filename to read and load as a module

Returns the resulting module

lisp_module *lisp_do_import(lisp_runtime *rt, lisp_symbol *name)
Given a module name, import and return it if possible, or raise error.

This process works as follows. First, check whether an existing module has already been registered by that name.
If so, return it. Second, attempt to read ./NAME.lisp as a lisp file, and return that as a module. Raise error on
failure.

Parameters

• rt – runtime

34 Chapter 3. API Reference

funlisp Documentation

• name – name of module to import

Returns the resulting module

3.8 Embedding Tools

int lisp_parse_value(lisp_runtime *rt, char *input, int index, lisp_value **output)
Parse a single expression from input, starting at index. Sets the result as a lisp_value in output. Return the number
of bytes parsed from input.

When a parse error occurs, the return value is negative, and output is set to NULL. The error code and line
number are set in the runtime, and may be retrieved with lisp_get_error().

When the string contains no expression (only whitespace or comments), the return value will still be non-negative.
output will be set to NULL. This situation is typically not an error, either meaning empty REPL input or the end
of the file you are parsing.

Parameters

• rt – runtime to create language objects in

• input – string to parse

• index – position in input to start parsing

• output – pointer to lisp_value ** where we store the parsed expression.

Returns -1 when an error occurs during parsing

Returns number of bytes processed from input

lisp_value *lisp_parse_progn(lisp_runtime *rt, char *input)
Parse every expression contained in input. Return the parsed code as a list, with the first element being the symbol
progn, and the remaining elements being the parsed code. This may be evaluated using lisp_eval().

When a parse error occurs, NULL is returned. Note that parse errors typically occur after memory allocation
has occurred. Memory allocated by this function is not cleaned up on error, and must be garbage collected.

Note that if the string is entirely empty, or only contains comments, then the progn will be empty, which currently
causes an exception when evaluated.

Parameters

• rt – runtime

• input – string to parse

Returns NULL when an error occurs (see lisp_print_error())

Returns the code, fully parsed, within a progn block

lisp_value *lisp_parse_progn_f(lisp_runtime *rt, FILE *file)
Parse every expression contained in file, and return the parsed code as a progn block. This function behaves
same as lisp_parse_progn(). Additional errors may be raised due to I/O errors on file.

Parameters

• rt – runtime

• file – file to parse

Returns NULL when an error occurs (see lisp_print_error())

Returns the code, fully parsed, within a progn block

3.8. Embedding Tools 35

funlisp Documentation

lisp_value *lisp_load_file(lisp_runtime *rt, lisp_scope *scope, FILE *input)
Parse a file and evaluate its contents. This is roughly equivalent to:

lisp_value *progn = lisp_parse_progn_f(rt, scope, input)
lisp_eval(rt, scope, progn);

Parameters

• rt – runtime

• scope – scope to evaluate within (usually a default scope)

• input – file to load as funlisp code

Returns NULL on empty file, or file read error

Returns the result of evaluating the last item

lisp_value *lisp_run_main_if_exists(lisp_runtime *rt, lisp_scope *scope, int argc, char **argv)
Lookup the symbol main in the scope, and run it if it exists. Calls the function with a single argument, a lisp_list
of program arguments. argc and argv should not include the main executable (just the script name and args).

Parameters

• rt – runtime

• scope – scope to find main in

• argc – number of arguments

• argv – NULL-terminated argument list

Returns a nil list when there is no main symbol

Returns NULL on error

Returns result of evaluation

void lisp_mark(lisp_runtime *rt, lisp_value *v)
Mark an object as still reachable or useful to the program (or you). This can be called several times to mark many
objects. Marking objects prevents the garbage collector from freeing them. The garbage collector performs a
breadth first search starting from your marked objects to find all reachable language objects. Thus, marking an
object like a lisp_scope will save all symbols and language objects contained within it, from being freed. Normal
use is to mark and sweep each time you’ve evaluated something:

lisp_value *result = lisp_eval(rt, scope, some_cool_code);
lisp_mark(rt, (lisp_value*) scope);
lisp_mark(rt, result);
lisp_sweep(rt);

Warning: Be explicit about marking. If we had left out the third line of the code sample above, there’s a
good chance that result would have been freed when lisp_sweep() was called.

Parameters

• rt – runtime

• v – value to mark as still needed. This value, and all values reachable from it, are preserved
on the next lisp_sweep() call.

36 Chapter 3. API Reference

funlisp Documentation

void lisp_sweep(lisp_runtime *rt)
Free every object associated with the runtime, which is not marked or reachable from a marked object.

Parameters

• rt – runtime

lisp_list *lisp_quote(lisp_runtime *rt, lisp_value *value)
Return value, but inside a list containing the symbol quote. When this evaluated, it will return its contents
(value) un-evaluated.

This function is used during parsing, to implement the single-quote syntax feature. For example '(a b c),
evaluates to the list containing a, b, and c, rather than calling a on b and c. This is because the expression is
transparently converted to the more verbose (quote (a b c)).

Parameters

• rt – runtime

• value – value to return quoted

Returns value but quoted

3.9 Error Handling

enum lisp_errno
Values:

enumerator LE_ERROR

enumerator LE_EOF

enumerator LE_SYNTAX

enumerator LE_FERROR

enumerator LE_2MANY

enumerator LE_2FEW

enumerator LE_TYPE

enumerator LE_NOCALL

enumerator LE_NOEVAL

enumerator LE_NOTFOUND

enumerator LE_EXIT

enumerator LE_ASSERT

enumerator LE_VALUE

enumerator LE_ERRNO

enumerator LE_MAX_ERR

const char *lisp_error_name[LE_MAX_ERR]

const char *const lisp_version

3.9. Error Handling 37

funlisp Documentation

lisp_value *lisp_error(lisp_runtime *rt, enum lisp_errno err_num, char *message)
Raise an error in the interpreter and return NULL.

This function is meant to be used within code that implements builtins. When an error condition is reached,
functions may simply do something like this:

if (some_error_condition())
return lisp_error(rt, LE_ERROR, "you broke something");

Parameters

• rt – runtime

• err_num – error number, for easy programatic acccess

• message – message to show the user

Returns NULL

void lisp_dump_stack(lisp_runtime *rt, lisp_list *stack, FILE *file)
Dump the execution stack to a file. This is useful if you want to print a stack trace at your current location. This
functionality can also be accessed via the dump-stack builtin function.

Parameters

• rt – runtime

• stack – When NULL, the runtime’s execution stack is used. When non-NULL, the stack
argument is used to specify what stack to dump.

• file – where to dump stack trace to

void lisp_print_error(lisp_runtime *rt, FILE *file)
Prints the last error reported to the runtime, on file. If there is no error, this prints a loud BUG message to FILE,
indicating that an error was expected but not found.

Parameters

• rt – runtime

• file – file to print error to (usually stderr)

char *lisp_get_error(lisp_runtime *rt)
Returns the error text of the current error registered with the runtime.

Parameters

• rt – runtime

Returns error string

enum lisp_errno lisp_get_errno(lisp_runtime *rt)
Returns the error number of the current error registered with the runtime.

Parameters

• rt – runtime

Returns error number

void lisp_clear_error(lisp_runtime *rt)
Clears the error in the runtime.

Parameters

38 Chapter 3. API Reference

funlisp Documentation

• rt – runtime

lisp_error_check(value)
A macro for error checking the return value of a lisp_eval() or lisp_call() function. This will return NULL when
its argumnet is NULL, helping functions short-circuit in the case of an error.

lisp_value *v = lisp_eval(rt, my_code, my_scope);
lisp_error_check(v);
// continue using v

Parameters

• value – value to error check

3.9. Error Handling 39

funlisp Documentation

40 Chapter 3. API Reference

CHAPTER

FOUR

ADVANCED TOPICS

This should help you if you want to understand the inner workings, implement your own types, or contribute to funlisp.

4.1 Type System

As previous pages have mentions, lisp objects rely on a mark and sweep garbage collection system to manage their
lifetimes. This page describes how the type system is implemented, which includes the garbage collection implemen-
tation.

In Java, everything is an object. In this language, everything is a lisp_value. This means two things:

1. Every object contains a type pointer.

2. Every object has a variable to store its mark.

3. Every object has a pointer to the object allocated after it, forming a linked list.

Every type declares these using the LISP_VALUE_HEAD macro, like so:

typedef struct {
LISP_VALUE_HEAD;
int x;

} lisp_integer;

You can cast pointers to these objects to lisp_value* and still access the type object. All objects are passed around
as lisp_value*.

In order to allow objects to be treated differently based on their type (but in a generic way to calling code), we use the
type object.

A type object is just another object, with type lisp_type. However, it is NOT managed by the garbage collector. It
contains the string name of a type, along with pointers to implementations for the following functions: print, new, free,
eval, call, and expand. Therefore, if you have lisp_value *object and you want to print it, you can do:

object->type->print(stdout, object);

Unfortunately that’s very verbose. To simplify, each of the functions implemented by a type object has an associated
helper function. So you can instead do:

lisp_print(stdout, object);

Which, under the hood, simply gets the type object and uses the print function. But there’s no magic or switch statements
involved here–we’re simply using the type object.

41

funlisp Documentation

All of the type object operations have their own helper functions like print. The advantage to doing this, besides less
verbose code, is that shared operations can be done together. For example, the lisp_new() function does some garbage
collection related operations that none of the type object new() methods need to know about.

As a result of these type objects, it’s not too difficult to add a type to the language! All you need to do is declare a
struct for your type, implement the basic functions, and create a type object for it. The type object must implement the
following operations:

• print: writes a representation of the object to a file, without newline

• new: allocates and initializes a new instance of the object

• free: cleans up and frees an instance

• expand: creates an iterator of ALL references to objects this object owns (see the garbage collection documen-
tation)

• eval: evaluate this in a scope

• call: call this item in a scope with arguments

4.2 Iterators

Iterators are one of several internal APIs used by funlisp but not exposed in the public API. They are similar to the
lazy evaluation constructs supported by other languages (e.g. generators in Python), but for C. Here is what an iterator
looks like:

struct iterator {
void *ds; /* the container data structure */
int index; /* zero-based index for the iterator */
int state_int; /* some state variables that may help */
void *state_ptr;

/* do we have a next item? */
bool (*has_next)(struct iterator *iter);

/* return the next item (or null) */
void *(*next)(struct iterator *iter);

/* free resources held by the iterator */
void (*close)(struct iterator *iter);

};

The iterator holds some state, and three operations:

• has next: tell us whether the iterator can be advanced

• next: advance the iterator and return the next value

• close: free any resources held by the iterator

Any data structure could implement these (e.g. an array, a linked list, a hash table, or others), and could be iterated
over by code that knows nothing about the underlying implementation. Iterators can also be composed in interesting
ways, with some of the helpers given below:

• empty iterator: return an empty iterator

• single value iterator: return an iterator that contains one item

42 Chapter 4. Advanced Topics

funlisp Documentation

• concatenate: given an array of iterators, yield from each of them until they run out

4.3 Garbage Collection

Garbage collection is implemented in Lisp using a mark-and-sweep system. In this system, values are first marked as
to whether they are “reachable”, and then all objects which are unreachable can be freed.

To implement this, we need two key components. First, we need a way to mark reachable objects. Second, we need a
way to track all objects so that we can find the unreachable ones to free. It turns out the second one is pretty easy: just
maintain a linked list of values as they are created. This logic is nicely handled inside of lisp_new().

The second one is trickier. My strategy was for every type to implement its own expand() operation. This is a function
which returns an iterator that yields every reference the object contains. For example, strings and integers yield empty
iterators. However, lists yield their left and right objects (if they exist). Scopes yield every symbol and then every value
stored within them. They also yield a reference to their parent scope, if it exists.

The mark operation then simply performs a breadth-first search. It starts with a single value, marks it “black”, then
uses the expand operation. It goes through each value, adding all “white” items to the queue, marking them “grey” as
it goes. Then it chooses the next item in the queue and does the same operation, until the queue is empty.

To do the breadth-first search, we use a “ring buffer” implementation, which implements a circular, dynamically ex-
panding double-ended queue. It is quite simple and useful. It can be found in src/ringbuf.c.

4.3. Garbage Collection 43

funlisp Documentation

44 Chapter 4. Advanced Topics

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

45

funlisp Documentation

46 Chapter 5. Indices and tables

INDEX

L
lisp_builtin (C type), 29
lisp_builtin_func (C type), 31
lisp_builtin_new (C function), 31
lisp_call (C function), 23
lisp_clear_error (C function), 38
lisp_compare (C function), 24
lisp_disable_strcache (C function), 22
lisp_disable_symcache (C function), 22
lisp_do_import (C function), 34
lisp_dump_stack (C function), 38
lisp_enable_strcache (C function), 22
lisp_enable_symcache (C function), 22
lisp_errno (C enum), 37
lisp_errno.LE_2FEW (C enumerator), 37
lisp_errno.LE_2MANY (C enumerator), 37
lisp_errno.LE_ASSERT (C enumerator), 37
lisp_errno.LE_EOF (C enumerator), 37
lisp_errno.LE_ERRNO (C enumerator), 37
lisp_errno.LE_ERROR (C enumerator), 37
lisp_errno.LE_EXIT (C enumerator), 37
lisp_errno.LE_FERROR (C enumerator), 37
lisp_errno.LE_MAX_ERR (C enumerator), 37
lisp_errno.LE_NOCALL (C enumerator), 37
lisp_errno.LE_NOEVAL (C enumerator), 37
lisp_errno.LE_NOTFOUND (C enumerator), 37
lisp_errno.LE_SYNTAX (C enumerator), 37
lisp_errno.LE_TYPE (C enumerator), 37
lisp_errno.LE_VALUE (C enumerator), 37
lisp_error (C function), 37
lisp_error_check (C macro), 39
lisp_error_name (C var), 37
lisp_eval (C function), 23
lisp_eval_list (C function), 32
lisp_get_args (C function), 33
lisp_get_errno (C function), 38
lisp_get_error (C function), 38
lisp_import_file (C function), 34
lisp_integer (C type), 29
lisp_integer_get (C function), 30
lisp_integer_new (C function), 30
lisp_is (C function), 24

lisp_lambda (C type), 29
lisp_list (C type), 26
lisp_list_append (C function), 27
lisp_list_get_left (C function), 27
lisp_list_get_right (C function), 27
lisp_list_length (C function), 26
lisp_list_new (C function), 26
lisp_list_of_strings (C function), 26
lisp_list_set_left (C function), 27
lisp_list_set_right (C function), 27
lisp_load_file (C function), 35
lisp_mark (C function), 36
lisp_module (C type), 29
lisp_module_get_scope (C function), 34
lisp_new_default_scope (C function), 24
lisp_new_empty_scope (C function), 24
lisp_new_module (C function), 34
lisp_nil_new (C function), 28
lisp_nil_p (C function), 28
lisp_parse_progn (C function), 35
lisp_parse_progn_f (C function), 35
lisp_parse_value (C function), 35
lisp_print (C function), 23
lisp_print_error (C function), 38
lisp_progn (C function), 32
lisp_quote (C function), 37
lisp_register_module (C function), 34
lisp_run_main_if_exists (C function), 36
lisp_runtime (C type), 21
lisp_runtime_free (C function), 22
lisp_runtime_get_ctx (C function), 22
lisp_runtime_new (C function), 21
lisp_runtime_set_ctx (C function), 21
lisp_scope (C type), 24
lisp_scope_add_builtin (C function), 32
lisp_scope_bind (C function), 25
lisp_scope_lookup (C function), 25
lisp_scope_lookup_string (C function), 25
lisp_scope_populate_builtins (C function), 25
lisp_singleton_list (C function), 26
lisp_string (C type), 29
lisp_string_get (C function), 30

47

funlisp Documentation

lisp_string_new (C function), 29
lisp_sweep (C function), 36
lisp_symbol (C type), 28
lisp_symbol_get (C function), 30
lisp_symbol_new (C function), 30
lisp_type (C type), 23
lisp_value (C type), 23
lisp_version (C var), 37
LS_CPY (C macro), 31
LS_OWN (C macro), 31

T
type_builtin (C var), 29
type_integer (C var), 29
type_lambda (C var), 29
type_list (C var), 26
type_module (C var), 29
type_scope (C var), 24
type_string (C var), 29
type_symbol (C var), 29
type_type (C var), 23

48 Index

	Language Guide
	Hello World
	Comments
	Types
	Integer Functions
	Control Flow
	Functions and Recursion
	Scoping
	Higher Order Functions
	Macros + Advanced Quoting
	The End

	Embedding
	Basic Components
	The REPL
	The Script Runner
	Calling C Functions From Lisp
	Basics of Lisp Types
	Adding Builtins to the Scope
	Calling Lisp Functions From C
	User Contexts
	Building Lists
	Advanced Topics

	API Reference
	Funlisp Runtime
	Lisp Values
	Lisp Scopes
	Lisp Lists
	Lisp Types
	Builtin Functions
	Modules
	Embedding Tools
	Error Handling

	Advanced Topics
	Type System
	Iterators
	Garbage Collection

	Indices and tables
	Index

